SSC JE

Previous Year Paper (ME) Mains 2018

PART C General Engineering (MECHANICAL)

	(MECHANICAL)	
L. (a)	Define the following: (i) Reversible and Irreversible process (ii) External and Internal irreversibility (iii) Intensive and Extensive properties	15
(b)	Describe the following: (i) Clausius Statement (ii) Kelvin-Planck Statement (iii) Perpetual motion machine of the second kind	
(c)	Volume of 0.1 m^3 of an ideal gas at 300 K and 1 bar is compressed adiabatically to 8 bar. It is then cooled at constant volume and further expanded isothermally so as to reach the condition from where it started. Determine: (i) Pressure at the end of constant volume cooling (ii) Change in internal energy during constant volume process (iii) Net work done and heat transferred during the cycle. Take $c_p = 14.3 \text{ kJ/kg K}$ and $c_v = 10.2 \text{ kJ/kg K}$.	15
(d)	A reversible heat engine operates between two reservoirs at temperatures 700°C and 50°C. The engine drives a reversible refrigerator which operates between reservoirs at temperatures of 50°C and - 25°C. The heat transfer to the engine is 2500 kJ and the net work output of the combined engine refrigerator plant is 400 kJ. (i) Calculate the heat transfer to the refrigerant and the net heat transfer to the reservoir at 50°C; (ii) Reconsider (i) given that the efficiency of the heat engine and the C.O.P. of the refrigerator are each 45 percent of their maximum possible values.	15

2.	(a) Give the comparisons between Otto cycle, Diesel cycle and Dual cycle.
w.	(b) An air standard Otto cycle is to be designed according to the following specifications. Pressure at the start of the compression process = 101 kPa; Temperature at the start of the compression process = 300 K; Compression ratio = 8; Maximum pressure in the cycle = 8.0 MPa. Find
	(i) the net work output per unit mass of air
	(ii) cycle efficiency
	(iii) MEP
T C	(c) Explain the effect of Superheating and Sub-cooling on vapour
	compression refrigeration cycle.
	(d) An air standard Brayton cycle has air entering the compressor at
27	100 kPa and 27°C. The pressure ratio is 10 and the maximum allowable temperature in the cycle is 1350 K. Determine
	anowable temperature in the cycle is 1900 it. Determine
	(i) temperatures at salient points of the cycle
	(ii) compressor and turbine work per unit mass of air
	(iii) net work output and work ratio
	(iv) thermal efficiency of the cycle
	(v) specific air consumption in kg/kWh
Trans.	(vi) improvement in the thermal efficiency of the cycle if a
	regenerator with 100% effectiveness is incorporated in the
175	avale

SJE 2018

3. (a)	Define density, specific volume, weight density, specific gravity and Bulk Modulus.	i i
	15	1
(b)	A ship weighing 4000 tons and having an area of 465 m ² at water line submerging to a depth of 4.5 m in sea water with a density of	TOTAL
\$465 5 5a.	1024 kg/m ³ moves to fresh water. Determine the depth of submergence in fresh water. Assume that the sides are vertical at the water line.	
Ar	15	
(c)	What is cavitation? How does it affect the performance of hydraulic machines?	
(d)	The following details refer to a centrifugal pump:	
	Outer diameter: 30 cm, Eye diameter: 15 cm, Blade angle at	
	inlet: 30°, Blade angle at outlet: 25°, Speed 1450 rpm. The flow velocity remains constant. The whirl at inlet is zero.	
18.4 J. T.	Determine the work done per kg. If the manometric efficiency is	
	82%, determine the working head. If width at outlet is 2 m, determine the power $\eta_0 = 76\%$.	
4. (a)	Write short notes on the following:	
	(i) Stainless steel	
	'(ii) High speed steel	
	(iii) High carbon steel .	
(b)	With the help of figure, describe the Shielded Metal Arc Welding	
	Drocess	1
. (c)	Explain the different operations performed in grinding machine.	1
(d)	Mention the differences between shaper and planer machine tools.	
SJE 2018	28	R. F. STEPPE

5.	(a)	Give the classification of kinematic pairs.	
	(b)	An engine, running at 150 r.p.m., drives a line shaft by means of a belt. The engine pulley is 750 mm diameter and the pulley on the line shaft being 450 mm. A 900 mm diameter pulley on the line shaft drives a 150 mm diameter pulley keyed to a dynamo shaft. Calculate the speed of the dynamo shaft, when (i) there is no slip, and (ii) there is a slip of 2% at each drive.	5
	(c)	Mention the comparison between involute and cycloidal gears.	5
	(d)	Explain the term height of the governor. Derive an expression for the height in the case of a Watt governor.	15
6.	(a)	Three forces of 2P, 3P and 4P act along the three sides of an equilateral triangle of side 100 mm taken in order. Find the magnitude and position of the resultant force.	15
	(b)	A body of weight 300 N is lying on a rough horizontal plane having a coefficient of friction as 0.3. Find the magnitude of the force, which can move the body, while acting at an angle of 25° with the horizontal.	15
A.	(c)	Derive the expression for the shear stress in a circular shaft subjected to torsion.	, 15
	(d)	Derive the expression for circumferential stress in a thir cylindrical vessel.	a =~_1/